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Chapter 1

Introduction

The National Aeronautics and Space Administration (NASA) directed LMI to

create a model for simulating scenarios involving aviation safety issues. This

model provides the second step of a two-step analysis process. In the first step, the

analyst determines the probability that a specific piece of equipment will fail. In

the second step, the analyst uses simulation to discover what happens when such a

failure occurs.

NASA has several heavily detailed, large-scale simulation programs at its dis-

posal. We did not seek to make this model yet another one. The primary benefit of
an LMI simulation model is that NASA and LMI analysts can work together to

tailor the simulation to investigating new safety technology as the need arises. To

maximize this benefit, the model features an open design that ensures that devel-

opers can extend it quickly and easily. The simulation is more valuable for its

potential to evaluate future issues than for its ability to evaluate current issues.

Therefore, ensuring that it has a flexible and extensible design was an even higher

priority than using it for a specific application. Nevertheless, having a problem to

solve is critical in maintaining proper scope and focus for the model, as well as to

show that the model operates properly.

We focused on one relatively simple safety issue: terrain avoidance in the event of

an avionics system failure. The terrain avoidance problem applies to current

NASA safety research. Therefore, it provides an interesting context for demon-

strating the model's usefulness and potential. The model allows the user to

• build a landscape of terrain objects and a flight path through that land-

scape,

• define a simple description of an aircraft: its speed, track, and location,

• define a set of navigation and surveillance equipment for the aircraft,

• and specify the pilot's ability to react to conditions that arise during flight.

By adjusting these parameters, the user can determine the effect of changes in in-

strument accuracy or pilot readiness on the outcome of an equipment failure dur-

ing flight.

The program models the aircraft itself in a rudimentary way. The aircraft is little

more than a point in space with a defined track and speed. The user can adjust the

pilot's state of readiness and the navigation and surveillance equipment status, but

not the aircraft's aerodynamic properties. Although the ability to supply a more
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detailed description of the aircraft might be desirable in some situations, it was

not necessary for this problem. Therefore, the developers placed their first priority

on ensuring that the elements of the aircraft--its pilot, its avionics, and its colli-

sion avoidance equipment--provided sufficient flexibility to address several dif-

ferent types of failures and responses.

REPORT ORGANIZATION

The remainder of this report includes the following chapters and appendices:

Chapter 2: Description of the Model describes the model's input and out-

put files and explains how to run it. General users will find this chapter of
the most use.

Chapter 3: Software Design discusses the software's object structure and

interactions. This chapter is of interest primarily to software engineers and

future developers of the model.

Chapter 4: Modeling and Algorithms discusses the mathematical and

computational specifics of the model. This chapter is for users, designers,

and developers who are interested in understanding the model in more rig-
orous detail.

Append&: Sample hlput and Output Files provides a set of sample files to

which the user can refer when the user is developing a new simulation
scenario.
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Chapter 2

Model Description

We developed the simulation model in MODSIM, an object-oriented language

that includes several built-in simulation features. MODSIM requires a Unix oper-

ating system to run. The model answers several types of terrain avoidance ques-

tions, such as the following:

• Does the timing of the equipment failure affect the outcome?

• Will the outcome differ if the pilot is less experienced or distracted?

• How will changing the minimal allowable distance between an aircraft and
terrain affect the outcome?

The model uses several input files to specify the terrain, the aircraft, and the air-

craft's equipment and pilot. A configuration file called "SafetySim.config" tells

the model the path and name of each input file. It also provides a path and name

that the model uses to write the output. Chapter 3 provides examples of all of
these files.

RUNNING A SIMULATION

To run the simulation, the user must have the SafetySim executable file in his

working directory. The configuration file also must be in the working directory.

The remainder of this chapter discusses the configuration file and the various in-

put files that the executable requires. Once these files are built, the user need only

enter "SafetySim" at the Unix command line prompt to run the simulation.

CONFIGURATION FILE

The configuration file has the format shown in Figure 2-1. Note that the actual file

contents are in 12 point Courier New; items that describe the file contents are in

Courier New Italic. Additional comments are italicized and inside parentheses.

This formatting convention holds throughout the chapter.
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Figure 2-1. Configuration File

BEGIN HEADER

Insert a descriptive

END HEADER

header here.

BEGIN FILES

TERRAIN FILE

Insert terrain file name here.

PATH FILE

path file name

PILOT FILE

pilot file name here

AVIONICS FILE

avionics equipment file name

AIRCRAFT FILE

aircraft file name

SURVEQUIP FILE

surveillance equipment file name

DATAREPORTER FILE

data reporter file name

END FILES

The configuration file must have a header block that begins with the BEGIN

HEADER label and ends with END HEADER label. Both must be in all caps, and
both must reside on their own line of the file. The user can use the header block to

write any comments that describe the data in the input files or the purpose of the

scenario. The user also might include information such as the creation time and
date of the scenario.

Similar to the header block, the files block must begin with a BEGIN FILES label

and end with an END FILES label. Both must be on their own line of the file, and

both must be in all caps. Likewise, the individual file labels also must be in all

caps. The file name corresponding to the label must follow on the next line. If this

file is in a different directory than the working directory, the user must specify a

full path.

DATA STRUCTURES AND ASSOCIATED INPUT FILES

As the configuration file shows, the model requires seven separate input files. The

number of files may be intimidating, but they are designed to minimize the

amount of work that a user will need to do. For example, rather than include the

same pilot information in a set of several aircraft, the user can place a single pilot

description in the pilot file and refer to the pilot's name in every aircraft that will
use that information.
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Description qf the Tool

When specifying a distance, a coordinate, or a speed, the user must maintain con-

sistent units. For example, it is acceptable to express an aircraft's location in me-

ters or feet. The speed of the aircraft, however, must be expressed in m/s or ft/s,

depending on the system used. It is not acceptable to specify positions in feet and

speeds in knots, for example. In specifying angular quantities--for example, a

heading error--the user should express those values in radians. There is one nota-

ble exception: To specify the angle of an intercept's signal trapezoid, the user

should express those values in degrees.

In addition to using consistent units within each file, the user also must use con-

sistent units across all files. For example, the user cannot specify aircraft locations

in feet and terrain locations in meters.

Pilot

The pilot is the simplest object in the simulation. The purpose of this object is to

provide the probability that a pilot would discover a condition or start some task

during a given simulation cycle. In other words, the pilot object generates a ran-
dom reaction time to some stimulus that a real-world pilot might experience. The

aircraft object actually performs the task; the pilot merely tells the aircraft when

to start.

Because the pilot is a simple object, its file description also is simple

(see Figure 2-2).

Figure 2-2. Pilot File

PILOTLIST

number of pilot descriptions

pilot name

pilot status

Pread¥ Pbusy Pverybusy

... (remaining pilot descriptions)

The file starts with a required label, PILOTLIST. The next line contains the num-

ber of pilot descriptions in the list. Each pilot description consists of five pieces of

information on three lines. The pilot's name appears on the first line of the file. It

can be any alphanumeric word (it cannot have spaces). The pilot's status appears

on the next line. It can have the following values: 1 for 'ready', 2 for 'busy', and 3

for 'very busy'. The third line contains three probability values associated with

each of the three values of the pilot's status. Each probability must be a real num-

ber between 0.0 and 1.0.
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To understandhowthepilot usesthis information,considertheexampleof apilot
descriptionin Figure2-3.

Figure 2-3. Typical Pilot Description

StandardPilot

2

.75 .55 .02

This pilot's name is "StandardPilot," and the pilot has a status value of 2. Thus,

the pilot will begin the simulation in a busy state, and its probability of reacting to

a stimulus within a given simulation cycle is 55 percent. With a simulation cycle

of one second, there is a 55 percent chance that the pilot will successfully react

within the first possible second. The model waits three cycles after providing the

pilot with a stimulus before allowing it to respond. Therefore, the best reaction

possible is a response that occurs in four seconds. The pilot uses a uniform ran-

dom number generator to determine success or failure.

If the pilot fails to react on the first try, it tries again on each subsequent simula-

tion cycle, until it succeeds or times out. The pilot times out after 60 cycles. In

other words, if the pilot does not react within 60 cycles, it does not react at all.

Therefore, the overall probability of a successful reaction is a function of a geo-

metric random variable with a maximum number of trials equal to 60.

Avionics Equipment and Avionics Package

Whereas the pilot description is the simplest in the model, the avionics equipment

description is the most complex. To explain how the avionics object works in the

model, we start with a description of how it computes an indicated direction, lo-

cation, or speed variable.

To start this discussion, we first simplify the aircraft to a point location on a single

coordinate axis (see Figure 2-4). The model assumes that the error is normally

distributed, with a mean _t and a standard deviation _3. The mean corresponds to a

steady-state bias error; the standard deviation provides a measure of the disper-

sion of the randomly chosen error value. Therefore, if the actual location is Ltr,,_,

the indicated location will most often fall within +_3 of Lt,_ + It.

Figure 2-4. Adding Error to a True Location

I +or II I

2/ T, "
lrue _ Lind
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Description of the Tool

The avionics object computes an error as discussed above for each of the air-

craft's three local coordinate axes: the tangential axis t, the perpendicular (or lat-

eral) axis p, and the altitudinal axis a (see Figure 2-5). Therefore, the user must

supply six variables, a mean, and a standard deviation for each axis to specify the

location error that a given avionics system will supply.

Figure 2-5. Aircraft Location Error Parameters

mo, .

Itp, _p

Itt' GI

The avionics system measures velocity in addition to location, so the user also

must provide a mean and standard deviation for each velocity parameter. Consider

that velocity is a function of the aircraft's speed s and its track. Its track is a func-

tion of 0, the rotation about the z axis, and 0, the angle of rotation about the x
axis:

v = f(s,O,¢_). [Eq. 2-1]

Therefore, to compute an indicated velocity on the basis of the aircraft's true ve-

locity, the user must define six more values: a mean and a standard deviation as-

sociated with s, 0, and 0- Figure 2-6 shows the error parameters associated with

track error. The speed error also requires a mean and standard deviation, but it is
dimensionless and therefore is not shown.

Figure 2-6. Aircraft Track Error Parameters

. + It+,

[-to, C0
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An avionics equipment description requires three more error values to fully com-

pute the aircraft's location and velocity. These values are map errors. The other

types of location errors will lead an aircraft to become uncertain of its own loca-

tion; a map error will make it uncertain of the location of every terrain feature. In

the model, these two uncertainties are essentially equivalent: For example, if

every mountain on a map is 500 feet further to the west than the aircraft realizes,

the error is equivalent to one in which the aircraft is 500 feet further to the east
than it realizes.

Map errors have only a steady-state bias value. They do not have a corresponding

standard deviation because the model assumes that they arise from data errors, as

opposed to instrument errors. For example, one possible way for a map error to

occur is if a synthetic vision system (SVS) database records the location of every

terrain item relative to a given reference point and that reference point is in error.

Because data errors do not vary from reading to reading, map errors also do not

vary. The user specifies a map error in terms of the global reference frame, as op-

posed to the reference frame of the aircraft. Therefore, the three values for map

error correspond to an offset on each of the x, y, and _ axes.

In summary, each avionics equipment description involves 15 error values: a

mean and standard deviation each for tangential, perpendicular, and altitudinal

location; a mean and standard deviation each for heading with respect to rotation

about the x axis, heading with respect to rotation about the _. axis, and speed; and a

value each for the map errors relative to the x, y, and z axes. What if the avionics

equipment fails? The equipment description includes two sets of these 15 vari-

ables: One set corresponds to a normal operating mode, and one set corresponds

to a failed mode. In addition, the user can specify an unlimited number of avionics

equipment descriptions in an aircraft's avionics package. In other words, the avi-

onics equipment onboard a given aircraft can have a primary system, a secondary

system, a backup secondary system, and so on. When the simulation inserts a fail-

ure into an aircraft's primary avionics equipment, the aircraft will respond by

asking the pilot if it recognizes the problem. If the pilot responds yes, the aircraft

will shift its active avionics equipment from the failed mode of the primary

equipment to the normal operating mode of the first backup equipment.

Avionics File

Like the pilot file, the avionics file has a required label, "AVIONICSLIST," that

must be in all caps and must reside on its own line at the beginning of the file

(see Figure 2-7). Each avionics package begins with its own name and the number

of equipment descriptions in the package. Each equipment description also begins

with its own name. The 15 error parameters associated with the equipment's nor-

mal operating mode lollow: first the location parameters, then the velocity pa-

rameters, and finally the map error parameters. These values should be separated

by white space (no commas). The parameters for the failed mode follow the pa-
rameters for the normal mode.
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Description of the Tool

Figure 2-Z Avionics File

AVIONICSLIST

number of avionics packages

name for first avionics package

number of equipment descriptions

name of first equipment description

_t (_t _p (_p _a (_a ,_

1

_¢ _¢ _e _e _s Gs No: _ 9p.

Mx My Mz

node

Mx My Mz

in package

mode

name of primary backup equipment description

name of final backup equipment description

Initial Status Initial Equipment

{remaining avionics packages)

The package lists all of its equipment descriptions in proper order. It concludes

with two numbers: the initial status and the initial equipment. If the initial status is

1, the avionics package starts the simulation m normal operating mode; if it is 2, it

starts the simulation in failed mode. The initial equipment tells the package which

equipment is active at the beginning of the simulation. If this value is 1, the active

equipment is the primary system. If it is 2, the active equipment is the first backup

system, and so on.

Given the complexity of the avionics package, a few examples help. The avionics

file in Figure 2-8 describes a typical avionics package. In the normal operating

mode, the aircraft location error is normally distributed about the actual location

because all of the mean error values are 0.0 for the location parameters. The stan-

dard deviation on each location axis is 20.0, which (if we assume units of feet)

means that the indicated location is equally accurate along each coordinate axis

and typically will fall within 2043 feet of the true location. There is no error asso-

ciated with the aircraft's velocity and no map error; the user is concerned only

with location errors in this case. The failed mode is similar to the normal operat-

ing mode, except that the location error becomes 12 times larger.
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Figure 2-8. T>pical Avionics File

AVIONICSLIST

1

T_icalAvionicsPkg

1

PrimarySystem

0.020.00.020.0 0.020.0

0.0 0.0 0.0 0.0 0.0 0.0

0.00.00.0

0.0240.0 0.0240.0 0.0240.0

0.0 0.0 0.0 0.0 0.0 0.0

0.00.00.0

II

The file in Figure 2-9 shows an avionics system with a map error only. This pack-

age also includes only one item of equipment. The user specifies no location or

velocity measurement errors; all of the parameters related to those errors are 0.0

in the normal operating mode and in the failed mode. The user specifies a map

error of 500 feet along the x axis, so the aircraft will believe that it is 500 feet

further away along the x axis from its true location at all times.

Notice that the failed mode and normal operating mode have the same values and

therefore are equivalent. This equivalence highlights the following point: The user

does not have to create a different failure mode and normal operating mode, then

instruct the model to insert an avionics failure in at some time during the simula-

tion. The user also can write the normal operating mode to include the desired

failure and fly the aircraft in that mode during the simulation. In that case, the

failure mode is ignored.

Figure 2-9. Avionics Package with Map Error

0.0 0.00.0

0.0 0.00.0

AVIONICSLI ST

1

MapEr rAvi on ics

1

Pr imarySys tem

0.0 0.0 0.0

0.0 0.0 0.0

500.00.00.0
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Description of the Tool

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

500.0 0.0 0.0

1 1

Surveillance Equipment and Surveillance Package

The surveillance equipment is similar to an avionics package, though much less

complex. The surveillance equipment determines the indicated distance from the

aircraft to the closest terrain object. It also can determine the indicated distance,

relative velocity, and relative position with respect to the closest aircraft; this

functionality is not necessary for a terrain avoidance problem, however. The

model will use this capability when it is extended to address traffic scenarios in-

volving near-miss situations.

The surveillance equipment description assumes that the distance measurement

error is normally distributed, with no steady-state bias. Therefore, the user must

specify only one value to define that error. The user also must define six velocity

error parameters (similar to the avionics equipment). The model ignores those

values, however; they are there in anticipation of traffic scenario extensions. The

surveillance equipment requires one remaining item: a maximum range. For ex-

ample, a surveillance radar may have a range of 50 miles, whereas visual indica-

tions (after all, the pilot's eyes are surveillance equipment) may have a range of

500 feet or less, depending upon weather situations. If the surveillance equipment

computes an indicated distance beyond its range, it will tell the aircraft that it sees

nothing.

The surveillance equipment does not have a failed mode; it only has a normal op-

erating mode. A surveillance package has two pieces of equipment: primary

equipment and backup equipment. As a result, the surveillance equipment input

file structure is somewhat simpler than that of the avionics equipment (see Figure

2-10). As usual, the first line of the file contains a label (in this case,

"SURVEQUIPLIST"). The number of surveillance equipment packages immedi-

ately follows the label. Each package begins with its own name, followed by the

name of the primary equipment.

The primary equipment description starts with _d--the standard deviation of the

distance error distribution. Then come six values that describe a velocity error

distribution; they are identical to those used in the avionics equipment description

to specify a velocity error distribution. The last item in the primary equipment de-

scription is its maximum range, R. The backup equipment is identical in format to

the primary equipment. The package description concludes with an initial status

enumeration. If the initial status is 1, the simulation will start with the primary

equipment active. If it is 2, it will start with the backup equipment active.

2-9



Figure 2-10. Surveilhmce Equipment File

SURVEQUIPLIST

Number of surveillance

Surveil i ance equipment

Primary equipment name

(_d

R

Backup equipment name

Gd

R

Initial Status

... (remaining surveillance

equipment packages

package name

equipment packages)

Figure 2-11 shows a typical input file for surveillance equipment. The package

name is "TCASRadar"; its primary equipment is called "Operating," and its

backup system is called "VisualOnly." Assume that all distances are expressed in

feet. The backup system appears to be more accurate than the operating system:

The standard deviation of its distance error distribution is only 50 feet, whereas

the primary system's standard deviation is 75 feet. The primary equipment has a

range of 50,000 feet (approximately 10 miles), however, whereas the backup has

a range of only 500 feet. A pilot who waits until he is within 500 feet of a terrain

obstruction will have a good idea of the obstruction's location. By the time he

sees the obstruction, however, he may be too close to avoid it.

Figure 2-11. Typical Surveillance Equipment hlput File

SURVEQUIPLIST

1

TCASRadar

Operating

75.0

0.0 0.05236

50000.0

0.0 0.05236 0.0 15.0

VisualOnly
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Descriptio1_ of the Tool

Path

APPROACH

50.0

0.0 0.15

500.0

i

0.00.150.0100.0

The path data structure provides sufficient information to allow an aircraft to ap-

proach from a cornerpost through a set of waypoints until it intercepts the glide

slope and localizer and finally lands. The terrain avoidance routines that the

model currently runs do not require the aircraft to land, so the approach portion of

the path is all a user need worry about. In this section, however, we discuss both

the approach and landing portions of the path description, for completeness.

Each path typically consists of one approach and one landing. To create a list of

paths, the user creates a list of approaches and a list of landings. The user then

creates the paths by selecting an approach and landing from the respective lists.

The approach is primarily a set of path points. Each path point has a designated

type, name, and coordinate triple. The approach description itself has a name,

followed by the number of points and an ordered listing of each point. The list

proceeds from a cornerpost to a handoff point, where the aircraft presumably

would intercept the localizer and glide slope.

In the path input file, an approach list has the format shown in Figure 2-12. The

list has a label of "APPROACHLIST," followed by the number of approaches in

the list. The path points typically start with a cornerpost, follow with a number of

waypoints, and end with a handoff point. The type of path point currently has no

meaning in the simulation; when it becomes necessary to introduce more com-

plexity, however, the type of point will tell the aircraft to end certain tasks and

begin a new task. For example, when the aircraft reaches a handoff point, it will

know to fly the remaining portion of its landing by using the runway intercept

signals.

Figure 2-12. Approach List

APPROACHL IST

Number of approaches

Name of first approach

Number of path points

Cornerpost

Name of cornerpost
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X Y Z

Waypoint

Name of waypoint

X Y Z

... (remaining waypoint descriptions)

Handoffpoint

Name of handoff point

X Y Z

... (remaining approach descriptions)

The sample approach list in Figure 2-13 shows how one might look. This approach

list has two approaches: a normal approach and a breakout approach. A breakout

approach is not really an approach at all. In the aircraft terrain avoidance problem,

the aircraft counters certain abnormal situations by breaking out of its normal ap-

proach and flying to a given location and altitude. At that time, it becomes an in-

active part of the simulation. This designated location and altitude is called the

breakout point, and the path that the aircraft flies to get there is called--for lack of

a better term--a breakout approach. In future extensions, the aircraft may hold at

the breakout point and attempt to reenter the approach queue. In the current model,

it simply becomes an inactive simulation object when it reaches the breakout point.

APPROACHLIST

Figure 2-13. Typical Approach List in Path File

2

ApproachToRunwayl2

4

Cornerpost

RWI2CP

50000.0 0.0 i000.0

Waypoint

RWI2WPI

40000.0 200.0

Waypoint

RWI2WP2

20000.0 500.0

Handoffpoint

RWI2WPI

800.0

600.0
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LANDING

i0000.0 800.0 400.0

BreakoutFromRWl2Approach

2

Waypoint

RWI2BreakWPI

i0000.0 20000.0

Breakoutpoint

RWl2Breakpt

i0000.0 50000.0

1200.0

2000.0

The landing description consists of a glide slope intercept, a localizer intercept,

and a runway. The glide slope and localizer intercepts have a signal area that is

approximated by a trapezoid. When an aircraft is inside an intercept's trapezoid

and within the required altitude range, it can pick up the intercept signal.

Three parameters define an intercept's signal trapezoid: the length of the trape-

zoid along the base, B; the length of the trapezoid along its perpendicular, L; and

the angle 0 (Figure 2-14). Note that the angle should be expressed in degrees, not

radians, for an intercept.

Figure 2-14. Intercept Signal Area

L

The midpoint of both types of intercepts coincides with the mouth of its corre-

sponding runway. The perpendicular of an intercept is parallel to the runway's

orientation. A localizer intercept has a minimum and maximum altitude for its

signal; a glide slope does not have explicit altitude limits.

A runway is a three-dimensional (3D) point in space supplemented by a two-
dimensional (2D) orientation vector and a length. The altitude of the runway can

be set by convention to zero or to the runway's height above sea level.
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Thelandinglist's labelis "LANDINGLIST" (seeFigure2-15).Eachlandinghas
aname.Thelabelfor the localizerinterceptCLocalizer") immediately follows the

landing name. The localizer's signal trapezoid parameters follow. Alter that

comes the label "Altitudes," followed by the localizer's low and high altitude

ranges. The glide slope specification includes its own label CGlideSlope"),

followed by its signal trapezoid parameters. The runway description follows the

glide slope description. It consists of a label ("Runway"), followed by the 3D co-

ordinate triple of its mouth, the 2D coordinate double of its orientation vector, and

its length. The simulation currently does not use the landing description, so we do

not include an example.

Figure 2-15. Landing List

LANDINGLIST

Number of landings

Landing name

Localizer

B L ¢

Altitudes

Low limit High limit

GlideSlope

B L

Runway

Runway name

X Y Z (location)

X Y (orientation)

Length

... (remaining landing descrip tions)

The user builds a path list by referring to the approach list and the landing list that

precede the path list in the input file (see Figure 2-16). The path description in-

cludes a name for the path, followed by an "Approach" label and the name of an

approach from the approach list. A "Landing" label and a landing name chosen

from the landing list follow. If the user desires, he can insert a "NoLanding" label

in place of the landing label and name;. The model will leave the landing portion

of that path empty. Because landing the aircraft is not a part of the current simu-

lation, use of the "NoLanding" feature is wise from a time-saving and error-

saving perspective.
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Aircraft

Figure 2-16. Path hlput File

(Approach list)

(Landing list)

PATHL IST

Number of paths

Path name

Approach

Approach name

Landing

Landing name

... (remaining path descriptions)

To build a breakout path from a breakout approach, the user must build a path,

use the breakout approach for its approach, and specify "NoLanding." The aircraft

specification expects a breakout path, rather than a breakout approach, so this step

is necessary.

All of the preceding object descriptions are part of an aircraft. The user builds an

aircraft by referring to a pilot from the pilot list, a path from the path list, and so on.

The user also must specify a location, track, and speed for the aircraft, using a

moving point. A moving point is simply a 3D point that has been supplemented

with a type, name, heading, and speed. The aircraft also requires two minimum

distances: a minimum separation from aircraft and a minimum proximity to terrain.

In addition to the foregoing structures and values, the aircraft has two other items

that determine how it will behave during the simulation. The first is an action se-

quence. An action sequence is a number followed by a keyword that describes

the aircraft's overall plan. The number is the amount of simulation cycles from

the start of the simulation when the aircraft will begin to act. (By convention, one

simulation cycle corresponds to 1 second.) The only keyword implemented to

date is "Approach." When the aircraft is supplied with this keyword, it will fly the

approach portion of its path from cornerpost to handoff point and stop. Keywords

such as "ApproachAndLand," "Land," "LandAndTaxi," and so forth will be im-

plemented as they become necessary to address other issues.

The second item of simulation control information is the event list. An event list

has three parts. The first part is a keyword that names the affected equipment

("Avionics," "Pilot," or "SurvEquip"). The second part is an enumeration
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(1,O,-1 ).A valueof 1meansthat theaircraftshouldupgradetheequipmentif
possible.In anavionicsupgradeevent,theaircraft switchestheactiveavionics
equipmentto thenext levelup:Thesecondarybackupwouldswitchto thepri-
marybackup,for example.A pilot upgradeeventwould raisethepilot's readiness
status--for example,from "busy" to "ready." A surveillanceequipmentupgrade
eventwouldchangeits statusfrom backupmodeto operatingmode.A valueof 0
correspondsto a faileduncoveredeventfor avionicsequipmentandadowngrade
for thepilot andsurveillanceequipment.An avionicsfaileduncoveredevent
changestheavionicssystem'sstatusfrom normaloperatingmodeto failedmode.
If thepilot successfullydetectsthis event,theaircraftwill automaticallydown-
gradetheavionicsto its nextavailablebackupsystemandrestorethestatusto
normaloperatingmode.A valueof-1 correspondsto adowngradefor all three
objects.Thethird itemin aneventis thesimulationcycle in which theeventoc-
curs.

The aircraft input file starts with a moving point list (see Figure 2-17). Each

moving point has a type, a name, and the following data: a 3D coordinate triple (x,

y, :) that specifies the point's initial location, a track vector T that specifies the

point's initial heading, and the speed of the point, s. The aircraft has no aerody-

namic properties. As far as the simulation is concerned, it literally is a 3D point

moving through space. Although this simplification reduces the realism of the

simulation, it makes the equations of motion easy to formulate. The simplification

also allowed the programmer to place a higher priority on interactions between

the aircraft and its various components.

Figure 2-17. Moving Point List

MOVINGPOINTLI ST

Number of moving points

Type of moving point

Name of

x y z

Tx Ty Tz

s

(remaining

moving point

moving point descriptions)

The moving point list belongs at the top of the aircraft file. The aircraft list fol-

lows (see Figure 2-18). Each aircraft is an aggregate of components defined in the

various other input files, supplemented by its separation distances, action se-

quence, and simulation events. Unlike the other items, the aircraft refers to the

moving point by type, not by name.
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Figure 2-18. Aircraft File

(Moving point list)

AIRCRAFTLI ST

Number of aircraft

Moving point type

Aircraft name

Pilot

Pilot name

Avionics

Avionics package name

Path

Path name

BreakoutPath

Breakout path name

SurvEquip

Surveillance equipment name

MinimumDi s t anc e s

Aircraft separation Terrain separation

Act i onSequenc e

Start Time Approach

Events

Number of events

Equipment Keyword Upgrade/Downgrade/Fai i Time

A typical aircraft input file might look like Figure 2-19. The aircraft name is

"Aircraft 1." It gets its initial speed, track, and position from the Boeing737

moving point. The moving point will start the simulation in a slight descent, at a

little more than 150 ft/s. It uses a pilot named "StdPilot," an avionics package

named "GPSBasedAvionics," and surveillance equipment named

"'GPSBasedSurvEquip." It must maintain a minimum distance of 750 feet to other

aircraft and 1,000 feet to terrain. If it comes within 1,000 feet of terrain--as

measured by its surveillance equipment--it will break out of its normal approach

route, "JuneauApproachToRunway26," and fly the "JuneauBreakout" path.
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Figure 2-19. Typical Aircraft File

MOVINGOBJECTLIST

3

Boeing737

MPI

50000.0 30000.0

.9998 0.0 -.0199

150.2

AIRCRAFTLIST

1

Boeing737

Aircraftl

Pilot

StdPilot

Avionics

GPSBaseclAvionics

Path

JuneauToRunway26

BreakoutPath

JuneauBreakout

SurvEquip

GPSBasedSurvEquip

MinimumDistances

75O i000

ActionSequence

1500.0 Approach

Events

5

Avionics -i 2000

Pilot -i 2000

Avionics 0 2500

Pilot 1 3000

SurvEquip -i 3500

5000.0
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Terrain

The aircraft's action sequence indicates that it will begin its approach 1,500 sec-

onds (or 25 minutes) after the start of the simulation. On the way, five events

should occur: The avionics system will need to go to its backup system, and the

pilot will become busy at 2,000 seconds. At 2,500 seconds, the backup avionics

system will fail. As a result, the aircraft will fly with the failed system or, if the

pilot detects the problem, switch to the secondary backup system (if one exists).

After 3,000 seconds, the pilot will cease to be busy and return to ready status.

After 3,500 seconds, the surveillance equipment will shift from the normal oper-

ating system to the backup system.

Although the navigation and surveillance systems both depend on the global po-

sitioning system (GPS)--at least, if their names are indicative of their configura-

tion-the simulation treats them as independent, distinct systems. Therefore, it is

perfectly acceptable for the avionics system to fail catastrophically while the sur-

veillance equipment remains fully operational. In designing an event sequence,

the user should consider possible interrelationships between the aircraft's compo-
nents.

The user builds a terrain map for the simulation by creating a list of terrain ob-

jects. Each object is a simple rectangular solid. To build more complex terrain, the

user can create several terrain objects stacked on top of each other, with various

orientations. For most scenarios, this level of fidelity should be acceptable. If a

scenario requires more realistic topography, the terrain object is based on a set of

geometry data structures that will allow it to take on more complexity.

The first step in defining a terrain object is to define its eight vertices in a point

list. Each point in the list has a unique ID number and a 3D coordinate triple

(see Figure 2-20).

Figure 2-20. Terrain Point List

POINTLIST

number of points

idl xl Yl zl

id2 x2 Y2 z2

in list

• • °

idn Xn Yn Z n

The terrain list follows the point list in the terrain input file. Each terrain object

has the format shown in Figure 2-21. The "Lower" and "Upper" keywords are re-

quired labels that specify the lower and upper face of the rectangular solid,
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respectively.The"idci" and"idui" refer to theID numbersof pointsin thepoint
list. Severalrulesmustbeobeyedin specifyingverticesfor theterrainobject:

4, Eachvertexin the lower facemusthavethesamez coordinate value; the

same holds true for each vertex in the upper face.

The vertices in each face must be listed in counterclockwise order, as

viewed from the top.

,* The first vertex in the upper face must be directly above the first vertex in
the lower face.

Although these restrictions are somewhat onerous to the user, they make it easier

for the terrain object to use advanced geometry routines from the more generic 3D

solid data structure on which the object is based. It also allows the user more free-

dom in orienting the object.

Figure 2-21. Terrain Description

Terrain object name

Lower

idLi idL2 idL3 idL4

Upper

idui idu2 idu3 idu4

The sample terrain input file in Figure 2-22 shows how the point list and the ter-

rain list work together. The first four points in the list make up the terrain object's

lower face; the second four points make up the upper face. The user can verify

that each of the four points on the lower and upper faces have the same elevation,

that points 1-4 and points I-5 are listed in counterclockwise order as viewed

IYom above, and that point 5 is directly below point 1.

POINT LIST

1 39470 1 i00

2 52156 2 113

3 45813 2 119

4 33127 0 106

5 39470 1 i00

6 52156 2 113

7 45813 2 119

Figure 2-22. Typical Terrain blput File

469.3 0.0

155 2 0.0

498 5 0.0

812 4 0.0

469 3 3000.0

155 2 3000.0

498 5 3000.0
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8 33127.0 106812.4 3000.0

TERRAINLIST

1

Obstructionl

Lower

1 2 3 4

Upper

5678

Data Reporter

The data reporter is a simple class that collects relevant output during a simulation

and records it in an output file, with a name that is based on the data reporter input

file. For example, if the user names the data reporter input file "sire.data," the

simulation will dump its output to the file "sire.data.out." The data reporter input

file contains only two items of information: the minimum terrain distance for the

simulation and the full printout flag. Because the structure of the input file is rela-

tively obvious, we skip directly to an example (Figure 2-23).

Figure 2-23. Typical Dam Reporter hlput File

MINIMUM TERRAIN DISTANCE

5OO

FULL PRINTOUT (Y/N)

Y

The minimum terrain distance is separate from the minimum terrain distance

given to each aircraft. If the aircraft comes closer to a terrain object than its own

minimum distance, it will take action to correct the situation by breaking out of its

approach. If the aircraft gets closer than the data reporter's minimum terrain dis-

tance, it is assumed that the aircraft is in imminent risk of a crash.

If the user selects "Y" for the full printout flag, the data reporter will record the

following data for every aircraft during every simulation cycle:

• The aircraft name

• The simulation time

• The indicated position

• The true position
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# Thetrueseparationdistancefrom theclosestterrainobject.

In everycase,thedatareporteralsowill recordvarioussimulationeventsof note.
Forexample,it would recordwhenanaircraft reachesawaypoint,whenanother
aircraftbreaksoutof anapproach,andwhenathird aircraftcrashes.Eachmes-
sagewill havethesimulationtimeandtheaircraftname.
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Chapter 3

Software Design

The simulation's narrow focus on aircraft terrain avoidance results in few com-

plex interactions between its actors. The aircraft will complete their approach un-

less they get too close to terrain. If they get too close, they will dodge the terrain

and fly a safe missed approach path to a single breakout point. Therefore, there is

little need to describe the model dynamically (using state diagrams). This design

description focuses on the simulation's object hierarchy, using Rumbaugh's Ob-

ject Modeling Technique.

The simulation world object controls all of the other objects in the model and

launches the simulation. It also gives the data reporting class the opportunity to

interrogate each object of interest and provide output for important events that

occur in the simulation. These events might include a missed approach, a pilot's

failure to discover an equipment failure, or a controlled flight into terrain.

The terrain and aircraft are the primary objects in the simulation world; all other

objects are components of one or the other of these objects. The remainder of this

chapter discusses the organization of the simulation world as a set of lists of

simulation components and describes the structure of the terrain and aircraft ob-

jects in detail.

THE SIMULATION WORLD

The simulation world loads all of its objects from a set of input files, launches the

simulation, and provides a central vantage point for detecting noteworthy events.

It owns a terrain objects list, an aircraft list, and a data reporter object (see Figure

3-1). It also owns lists of components that are used to build each aircraft and ter-

rain object.

The simulation world feeds each object the information it needs to perform its set

of actions. For example, the simulation world provides each aircraft with a refer-

ence to its closest terrain object. The aircraft interrogates that terrain object to de-
termine its indicated distance. The simulation world also tracks the true distances

from each aircraft to each terrain object. It feeds that information to the data re-

porter, which decides whether an aircraft has strayed close enough to a terrain

object to warrant noting it in the output file. The simulation world also accepts

messages from the aircraft--for example, the aircraft notes when it breaks out of

its approach path--and relays those messages to the data reporter for processing.
This central control reduces the interactions between the classes in the model. The

reduced interactions enhance the model's maintainability and extensibility.
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Figure 3-l. Simulation World and Major Components

ColllpOllelllS of

Aircraft and

Terrain

Objects

SimWorld

Terrain

DataReportet

!
Aircraft ]

The simulation world loads the items required to build the terrain and aircraft ob-

jects separately (see Figure 3-2). For example, each terrain object refers to a set of

points in a master list to create its boundaries. This design allows several terrain

objects to use the same point as a vertex. Similarly, several aircraft can refer to

the same avionics object, for example. Although building terrain and aircraft ob-

jects from external lists adds to the programming complexity of the data loading

procedure somewhat, it simplifies the input file structure and eliminates redundant
effort for the user.

Figure 3-2. Other Simulation World Component Lists

Aircraft List. ___
Terrain List.

Data Reporter

SimWorld

d. ,L

,,I d,

Terr. Points J ] Paths

l-.rro r,_l reaIll

Pilots I [ SurvEquip

I
RNG

All of the component lists in the simulation world structure hold aircraft compo-

nents, except for the terrain point list. The structure also includes two objects in

addition to the component lists: An error stream object provides troubleshooting

data to an output file when the program discovers an input file error, and a ran-

dom number generator (RNG) provides random numbers to all of the objects that
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use random variables. For example, each avionics object refers to the RNG when

it provides an indicated distance between the aircraft and its next waypoint.

TERRAIN OBJECT AND GEOMETRY MODELING

A consistent and robust geometry framework is critical for creating an aircraft

safety simulation. The safety model borrows geometry algorithms and objects

from the Flight Segment Cost Model, a module of the Aviation Systems Analysis

Capability that discusses the geometry-based algorithms used in this model. The

terrain object uses all of the geometry classes, so it provides a convenient context

tbr discussing their class structure.

The terrain object is a specialization of the more generic solid class (see Figure 3-3).

The solid is an aggregate of its boundary elements: four or more polygon objects.

Similarly, the polygon is an aggregate of three or more segments, and the segment is

a pair of points. To facilitate easier input/output routines, we created a point list

object as well. The terrain object chooses its eight vertices from a point list; then it

uses those vertices to construct its six rectangular faces.

Figure 3-3. Terrain Object and Geometry Classes

Terrain

Solid

4+

Polygon I

?

.........................................................................................

3+

Scgnlclll I

Point _

PointLisl

The terrain object uses the solid's geometry routines to compute distances to air-
craft and to detect when an aircraft has entered its boundaries. When an aircraft

lies on or inside the boundary of a terrain object, we know that it has crashed.

Most of the physical objects in the model are child objects of one or more ge-

ometry objects or are composed of one or more geometry objects. For example,

an aircraft is a child of the point object because the model represents aircraft as

3D locations with headings and speeds. To determine the distance between an air-

craft and a terrain object, the aircraft feeds its location to the terrain object, which
checks its distance relative to each of its six faces.
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AIRCRAFT OBJECT

The aircraft object is a child of the moving point object--which, in turn, is a child

of the point object (see Figure 3-4). The aircraft has one human factor object, two

paths, a surveillance equipment object, and an avionics object. The human factor

object contains routines that allow the aircraft to determine whether the pilot will

detect an error condition, such as a gauge failure. The aircraft's two flight paths

include a normal approach and a breakout path. The breakout path provides a safe

route to take in case of a major equipment failure or unacceptably close proximity

to terrain or other aircraft. The surveillance equipment object and avionics object

provide two functions that are distinct from a programming perspective: surveil-

lance (tracking other objects and their proximity to the aircraft) and navigation

(tracking the proper path). From a physical perspective, one or more pieces of

equipment may share in these responsibilities.

Figure 3-4. Aircraft Object

( :'i Ic, z ) /

I Palh _2

_<_ Aircraft

+
MovingPoml

IM'avmgP_'in I

SurvEquip

t Avionics J

The human factor object is a relatively simple structure. The path object and the

navigation/surveillance equipment are considerably more complex. The following
two sections describe them further.

PATH

In narrowing the scope of the model to address terrain avoidance issues first, we

left many of the design features from the original design unimplemented. For ex-

ample, we have not implemented controllers because they are not necessary for a

simple terrain avoidance scenario. The path, however, has several implemented
features that the current model does not use. These features will allow the model

to handle other issues, such as runway traffic and landing blunders. We may de-

velop these scenarios relatively soon, so it is instructive to describe them in this

report.
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Approach

Landing

The flight path currently includes separate approach and landing objects (see

Figure 3-5). The simulation loads a set of approaches and landings separately. It is

possible to mix and match them when building a path, provided that the handoff
between them occurs at the same location.

Figure 3-5. Path Objec!

I
Landing

Runway ] _ GlideSlope

Point _

?

__ ,Intercept

The approach is the only portion of the path that the simulation currently uses.

The approach is an ordered list of location points, which are basic 3D points that

are enhanced to include a name and type. For example, the user can specify

whether a particular point is a cornerpost, waypoint, or handoff point. A breakout

path is a special type of "approach" that ends at a cornerpost or other designated

point, rather than a handoff point. The types of path points currently have little

meaning; they will become significant when the model expands to include con-
trollers and their control domains.

The landing portion of a path object has three components: a localizer, a glide

slope intercept, and a runway. The glide slope and localizer are children of the

more general intercept class. This class is a polygon object--specifically, a trape-

zoid-that specifies a region of space in which aircraft can detect the intercept

signal. Once the aircraft concludes its approach, it will rely on the intercept sig-

nals, rather than its own avionics, to determine its position for the remainder of its

flight.
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Runway

Each localizer and glide slope pair is associated with exactly one runway. The

runway has a point that describes its entrance, a length, and a 2D orientation.

NAVIGATION]SURVEILLANCE OBJECTS

The aircraft's avionics object performs its navigation functions, and the surveillance

equipment object performs its surveillance function. In reality, one type of equip-

ment may handle some or all of these two functions. For example, a GPS may tell

the aircraft where it is and how far away the nearest mountain is. The software

design separates those functions into two objects with no direct interaction.

Both objects are children of a generic navigation/surveillance parent object (Nav-

Surv in Figure 3-6). The parent object contains a list of Navigation/Surveillance

Equipment Matrices (NSEqMats), which are objects that hold a specific set of er-

ror parameters attributed to the accuracy of a specific piece of equipment. The

avionics object can have an unlimited number of these items in its list; the first

equipment matrix describes the primary navigation system, the second describes

the secondary system, and so forth. Each matrix has a set of values associated

with nominal operating accuracy and failure accuracy. Typically, when the item

fails, the pilot will have the opportunity to detect the failure and switch to a

backup system.

Figure 3-6. Navigation and Surveillance Objects

SurvEquip NSEqMat

T
I NsEqList

t

Avionics __+

NavSurv

The surveillance equipment object only holds one equipment matrix in its list.

The nominal mode for the surveillance equipment corresponds to a working sur-

veillance system, be it a GPS system or collision avoidance radar. The failed

mode corresponds to visual indications only.
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FUTURE EXTENSIONS

In designing and building an aviation simulation model in a reasonable amount of

time, the risk of overdesign far outweighs the risk of designing a system that is

too simple to be useful. Simply put, adapting a simply designed, narrowly focused

model to new problems is easier than designing a monolith that addresses every

conceivable aviation safety issue. The need for simplicity led to the goal of a sim-

ple, one-page design, as shown in Figure 3-7. To create a useful framework for

further work, however, simplicity cannot be the only goal; the design also must be

extensible.

To maximize the design's extensibility, we placed special emphasis on a hierar-

chical approach to object interactions. For example, the object that models a pilot

has no direct knowledge of the aircraft object or any other object. It simply pro-

vides, in accordance with user-specified probabilities, a go/no-go check that an

aircraft uses before acting. The avionics object, path objects, and naviga-

tion/surveillance objects are similarly limited; for example, the surveillance

equipment object does not interact directly with a terrain object to determine the
aircraft's indicated distance from it. Instead, the aircraft interacts with the terrain

object to determine the true distance, and the surveillance object provides an error

that is consistent with its equipment accuracy. This approach makes the object

interactions easier to build and maintain, which simplifies the task of extending

the model.

The most obvious extension to this model will be to add a landing algorithm for

the aircraft. The model's current collection of objects is sufficient for implement-

ing this algorithm. To simulate traffic scenarios, it will be necessary to develop a

controller class. A capability to model traffic scenarios will be a valuable exten-

sion to this model, so we have already considered the controller object's compo-

sition and interactions in conceptual design activities.
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Chapter 4

Modeling and Algorithms

In this chapter, we discuss the modeling methods we used to simulate aircraft

flight, compute important geometric parameters, and model human reaction to a

stimulus. These methods constitute the bulk of the mathematical groundwork re-

quired to model a terrain avoidance scenario. Because the safety simulation model

is working code, the reader may wish to learn about possible ways to extend and

enhance the methods described. There|bre, we describe algorithm modifications

that may prove useful in future work, when applicable.

FLYING AN APPROACH

The first step in flying an approach is to place the aircraft at the cornerpost, as in-

dicated by its avionics equipment. Once there, the aircraft turns until it is pointing

at the next waypoint on the path and then flies in a straight-line motion until it

reaches that point. It continues this pattern until it reaches the handoff point.

Turning to a Waypoint

The aircraft must first determine which direction to turn. For example, if the air-

craft is turning toward a waypoint that is 45 degrees to starboard, it can turn

45 degrees to starboard or 315 degrees to port. Clearly, turning to starboard is

preferable. The aircraft determines which way to turn by calculating the direction

vector 1 toward the goal waypoint and taking the cross-product of the track vector

h and/. The ;. axis component of h × 1 tells the aircraft which way to turn: If its

sign is negative, the aircraft should turn to starboard; otherwise, it should turn to

port.

The next step for the aircraft is to determine its radius and center of turn. The

model currently assumes a 15 degree bank angle for all normal turns. Equation

4-1 computes the magnitude of a turn radius r, based on a given bank angle _:

r = vx,. / g tan ¢/,, [Eq. 4-1]

where v.,_. is the magnitude of the component of the velocity in the z. = 0 plane and

g is the acceleration due to gravity. To compute the center of turn, the model must

first compute the direction of the radius of turn. The radius direction is h,,,, the

component of the track vector in the z = 0 plane, rotated +90 degrees, depending
on the direction of turn:
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[Eq. 4-2]

if turning to starboard and

[Eq. 4-3]

if turning to port.

The turn radius r and turn center C(xv) create the arc that the aircraft flies while

turning (see Figure 4-1). To determine the aircraft's location A(x,y) on that arc,

the model computes the angle 0 swept between the x axis and the current direction

of the turn radius. Equation 4-4 computes 0:

Ay --C

0 = tan-I ,
A, - C, [Eq. 4-4]

Figure 4-1. Aircraft's Location on Turn Arc

With r and q, we now have the aircraft's location expressed in cylindrical coordi-

nates. Given that the angular velocity and linear velocity are related such that

X'f= _, [Eq. 4-51
r
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we know that after turning for one simulation time step t the aircraft's new angu-
lar location would be

O' =0 '-I +tO [Eq. 4-6]

(The t superscript denotes the current time step; the t- 1 subscript denotes the

previous time step.) The aircraft's new location after a simulation time step would
be

A'_ = C., + r cos 0

A_. = C,. + rsin0

A'. = At_-1 + v_t

[Eq. 4-71

After each time step, the model takes the cross-product of the track vector and the

vector defined by the direction from the aircraft to the waypoint. When the z

component of the cross-product changes sign, the aircraft has completed the turn.

The model assigns the aircraft a track vector that will take the aircraft to the way-

point along a linear path.

Flight on a Linear Path

Flying a linear path is much simpler computationally than turning. The equations

of motion for linear flight are

A.f,. = At,-f + v.,.t

a '_,= Ate?t + v ,,t

A t_= A__-l + v_t

[Eq. 4-8]

Determining when the aircraft has arrived is more difficult: Because of errors in

the avionics package, the aircraft could be quite a distance from the actual way-

point when it believes that it has reached the waypoint. The simulation decides

when the aircraft has reached the location by

• Computing the aircraft's expected location at the next time step

• Computing the distance between the waypoint and the current position

• Computing the distance between the waypoint and the position at the next

time step

• Comparing the two distances.

When the distance between the expected position and the waypoint is greater than

the distance between the current position and the waypoint, the model assumes
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that the aircraft has reached its goal (see Figure 4-2). At that time, it will either

turn toward the next waypoint or end the approach, depending on whether it has

reached the end of the path.

Figure 4-2: Aircraft at Mirlimum Distance from Waypoint

Indicated track

dl_ i dl

_.._. ."- Waypoint
°,

dt + l"..

w

t-I t t+l

True track and location

NAVIGATION EQUIPMENT: CALCULATING INDICATED

VERSUS ACTUAL VALUES

Before we consider how to incorporate instrument errors into indicated location,

track, and speed values, we review how the navigation object models those errors.

Recall (see Chapter 2) that the navigation object represents an error for a given

value as a normally distributed offset from the true value (Figure 4-3). The mean

of the normal distribution corresponds to a steady-state bias error; the standard
deviation defines the variance of the distribution.

Figure 4-3." Error as Normally Distributed Offset of a Value

I +es II I

_1 Lind

The navigation and surveillance data structures apply these normally distributed

errors to six of the aircraft's location and velocity parameters: the x, y, and z coor-

dinates; the track's angular rotation with respect to the x axis, 4i; the track's angu-

lar rotation with respect to the z. axis, 0 (see Figure 4-4), and the speed. The
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navigation object's location errors are relative to the aircraft's local coordinate

frame. This local frame's altiludinal axis, a, aligns with the global z axis. The air-

craft's tangential axis, t, aligns with the track of the aircraft, as projected onto the

z. = 0 plane. A perpendicular axis, p, lies at a right angle from the tangential axis

in the z = 0 plane.

Figure 4-4: Aircr_![? Position, VelociO', and Error Parameters (Speed Not Shown)

_p, ¢Yp

2,1O, (5 0

Indicated Location

The navigation equipment introduces location errors into the simulation in two
situations:

• When it adds an error vector to the true location to produce an indicated
location.

• When it sets an aircraft's true location, based on the expected instrument
error and the desired initial indicated value.

Both situations clearly require the same set of equations to relate the indicated
location coordinates to the true location coordinates:

Xin d _- Xtrue + e x

Yimt = Ytrue + e v

Z'in d -_ Ztrtt e -{-e.

[Eq. 4-9]

This set of equations expresses the errors in terms of the global coordinate frame,

however; the navigation object stores its error parameters in the aircraft's local

coordinate frame. To use Equation 4-9, the model must transform the error values

from the local frame to the global frame. The a axis of the local frame aligns with

the global z axis. The t axis of the local frame aligns with the projection of the

track vector h onto the z = 0 plane. We define the p axis by rotating the t axis

clockwise 90 degrees in the z. = 0 plane. As viewed from above the z -'- 0 plane,

the local and global coordinate axes appear as shown in Figure 4-5.
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Figure 4-5: Trans.[orming from Aircraft to Global Coordinates

:,¢

A/Ol

.r'_

The local coordinate frame transforms to global coordinate frame according to the

equations

[Eq. 4-1 O]

Because the t axis aligns with the track vector, we can derive expressions for the

cosine and sine terms in Equation 4- l 0 in terms of h,,., the projection of the track

vector onto the z = 0 plane:

(h,.,.)_ _

COS 0 t -- hat [ 1 C
I

(h,.,.), =

sin0,-£'_i j = s

[Eq. 4-1 !]

Recall that the errors in the altitudinal, tangential, and perpendicular directions are

random numbers that the simulation generates via a normal distribution:

e t =N(Pt,at)

el, = N(pF ,a t, )

e. = N(p.,cr, )

[Eq. 4-12]

The errors in terms of the global coordinate system therefore are

e x = ce t + sep

e v = se t -cep [Eq. 4-13]

e. = e a
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Indicated Velocity

The navigation object stores the velocity error parameters in spherical coordinates:

(s, 0, @). Therefore, to compute an indicated velocity, we must convert the track

vector h from Cartesian to spherical coordinates. The true speed, s, is equivalent to

the radius r of the spherical coordinate triple (r, 0, @). Therefore, computing an

indicated speed is trivial. One must simply generate an error value, using a nor-

mally distributed RNG, and add it to the true speed. To compute an indicated track,

one must perform the following conversion on the true track vector:

h(x, y, :) = h,i + h, _i+ h.k

(h,/ -l
h(O,(p) :0 = tan -l /h, )'q_ = sin (h_)

[Eq. 4-14]

Once converted, the model computes the normally distributed random numbers e0

and e¢, and adds each to the appropriate value to generate an indicated h(O, ¢). It

then computes the track vector back to Cartesian coordinates, using the inverse of

Equation 4-14.

TERRAIN/AIRCRAFT DISTANCE CALCULATION

Because the model represents the aircraft as a point in 3D space and the terrain

object as a rectangular solid, computing the distance between them is simple.

When the terrain object receives its eight vertices, it receives them in a known

order (see Chapter 2). It uses this known order to create the six boundary faces of

the terrain object. When it creates those faces, it computes a unit normal vector n

for each face. With this vector, it is possible to represent the plane of a face as a

half space:

0 = n, x + n,, y + n: z - (n xx 0 + n,. Y0 + n: z0 ), [Eq. 4-15]

where (xo, Yo, zo) are the coordinates of one of the face's vertices. The halfspace

has a useful property: It is possible to get the distance d from the halfspace to any

point (X, Y, Z) by plugging that point into the halfspace equation:

d = n.i.X + n i.Y + n _Z - (n xx 0 + n ,.Y0 + n: zo ) • [Eq. 4-16]

Furthermore, d is directional: If it is negative, we know that it is on the inside of

the halfspace; if it is positive, we know that it is on the outside of the halfspace.

We can use the directional property of d to determine the distance from a point to

a terrain object (or any rectangular solid). The algorithm is as follows:

1. Plug the point into the halfspace equation of each of the solid's six faces.

If the point is inside the solid (in the case of an aircraft, that means it has
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crashed), all six of the dgs will be less than or equal to zero. In that case,

the model defines the distance between the solid and the point to be zero.

If the point lies outside the solid, it will lie outside one to three of the

solid's faces. Figure 4-6 shows these three possibilities.

Figure 4-6. Distances from a Point to a Rectangular Solid

!

!

!

i
idl

!

d2

D = d I D2 = d l- + d2- D2 = d I + d22+ d3"

3. Square all non-zero dis. Sum them and take the square root of the sum to

get the distance from the point to the solid.

This algorithm relies on the fact that all faces of a solid that share a vertex are

mutually perpendicular. A more general algorithm, using halfspaces, also is pos-

sible, but these methods are more complex. Nonconvex solids with a large num-

ber of faces can add considerable complexity--potentially, enough to greatly

reduce the execution time of the model. If a new scenario requires highly complex

terrain geometries, the developers should consider integrating a commercially

available geometry kernel into the model.

CHOOSING TURN DIRECTION TO AVOID TERRAIN

When a pilot breaks through a haze and finds that the aircraft is too close to a ter-

rain object, the aircraft must climb to avoid it. The pilot usually will turn the air-

craft to avoid the object as well. Deciding which direction an aircraft should turn

to avoid an object is easy for a pilot--but for a computer simulation. The method

involves projecting the object point (the aircraft), its line of sight (track vector),

and the obstructing solid's vertices (terrain object) onto the z = 0 plane (see Figure
4-7).
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Figure 4-Z Projecting Terrain and Aircraft onto z = 0

I I /I I

Using the projected points as a reference, getting the angle swept from the line of

sight to the starboard-most and port-most vertex of the terrain object is straight-

forward (see Figure 4-8). To determine the angle swept between the line of sight l

and the vector v that extends from the aircraft to any vertex of a terrain object, the

model takes the cross-product of the vector and the line of sight. The angle swept

from the line of sight to the vector comes from the following equation:

/XV
- sin 0 [Eq. 4-17]Illv

The side with the smallest of the two angles is the direction that the aircraft

should turn to avoid the object. As Figure 4-8 implies, this method does not re-

quire the terrain object to be a rectangular solid. In fact, the terrain object can be a

general polyhedron.
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Figure 4-8. Determining Smallest Turn Angle to A void Terrain

0p

:, ........... :"/
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MODELING PILOT REACTION TIME

Two possibilities exist for computing pilot reaction times: The model can test to

see that the pilot successfully reacts and then generate a reaction time on the basis

of some random distribution, or it can test the pilot periodically during the simu-
lation to see whether it succeeds. The reaction time then becomes the amount of

time required to generate a successful test. Both methods are relatively straight-

forward to implement. The latter method is a little more intuitive, and it offers

more flexibility to adjust for the difficulty of a task than the former. We therelbre
chose the latter method.

The reaction time T,,_,, is a function of a geometric random variable; the number of

tests required to successfully react, n; and the time elapsed per test, T,e._,:

for ?1 _-- //max

[Eq. 4-181
otherwise

The reaction time is defined only if n is less than some maximum number of tests

n,,,,,. Otherwise, the simulation presumes that the pilot does not respond to the

stimulus. The pilot data structure generates the reaction time according to the
Ibllowing algorithm:

1. Wait the minimum reaction time T,,,,,.

2. Set n = 0.
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3. Until a successful test occurs or n = n,,,,:

a. Wait one test duration time Try.+,.

b. Generate a uniform number u = U(0, 1)

c. Compare u to the pilot's probability of a successful test p: ifp > u, the

test is successful. Otherwise, increment n by 1 and repeat step 3.

Only one currently implemented event forces a pilot to react: an uncovered failure

of the avionics (navigation) equipment. Therefore, the model uses a constant T,,,i,,

of 3 seconds, a constant T,,,+tof 1 second, and an n,,,,,+,of 60 cycles, corresponding

to a 60 second window in which the pilot must react. It would help the user to

know what value ofp corresponds to a given probability that the pilot ultimately

will fail to react to the event. The pilot ultimately fails to react when n, the out-

come of a geometric random variable that we call X, equals or exceeds n,,,,,.

Equation 4-19 allows the user to calculate the probability of that outcome:

e{x _ }= (I - p)" ......-' [Eq. 4-19]

To ensure that a pilot fails to react at least 50 percent of the time, the user must

select a p < .012.

This algorithm for computing pilot response time extends to other human ele-

ments that developers may add in future enhancements. For example, this algo-

rithm can be used to determine the time required for a controller to notice that an

aircraft has strayed off course. In that scenario, it may be necessary to lengthen

T,,.,, from 1 second to 5 seconds, because the controller's radar screen may take

that long to complete a sweep. For other types of stimuli, it may be necessary to

adjust T,,,i,,. In the event of more complex stimuli, the developer also can raise the

number of successful tests that the human must perform. For example, if a human

must diagnose an error condition by looking at four separate gauges, it is possible

to adjust the algorithm to wait until four successful tests occur before declaring a
successful reaction.
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AppendixA

A Simple Example
...... i ¸¸¸ _ : :i : : _ _57

This appendix shows a simple example involving two aircraft flying an approach

of four waypoints through a valley (Figure A- 1). The aircraft proceed from the

cornerpost ("CP 1") to the handoff point ("HO"), provided that they do not en-

counter terrain. If they come too close to any of the obstructions, they will break

out of the normal approach and fly the breakout path, which involves turning from

wherever they happen to be and heading to breakout point "BO." We made the

scenario geometry as simple as possible to aid the reader in understanding the

data presented in the input and output files. With more complex geometry, it be-

comes difficult to picture what the simulation does simply by reading the numeric

output.

BO

Figure A- I. Terrain attd Path for Example

Obstruction

1-1

\
\

Obstruction

Obstruction

WP2 2-2

l
WPI

CPI
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Thescenarioflies two differentaircraft.Onehasfully accurateavionicsandop-
erationalsurveillanceequipment.Theotherhasavionicsthatarefully accurate,
with theexceptionof asignificantmaperrorwith respectto thex axis. This air-

craft also has severely limited surveillance equipment. The map error acts to push

the right-hand obstruction into the path of the second aircraft, and the limited sur-

veillance equipment prevents the aircraft from detecting the problem quickly. The

simulation output shows that this aircraft takes an emergency turn/climb to port

and flies to the breakout point after clearing the terrain. We do not provide a full

printout of the output file; that would be tedious for the reader. Instead, we pro-

vide excerpts from the file and comment on the data.

The main purpose of this example is to provide a working set of input files that

readers can use as a template for creating their own scenarios. Creating a valid set

of input files is not easy; we emphasized algorithm and object development over

user-friendliness. When we do provide comments about the input files, they ap-

pear at the end of the file listing that they discuss. Comments are interspersed

with the output file excerpts. The file listings are in 12 point Courier New; addi-

tional comments are in 12 point Times New Roman.

CONFIGURATION FILE (SAFETYSIM.CONFIG)

BEGIN HEADER

Safety Simulation sample configuration file, 17

January 2001.

END HEADER

BEGIN FILES

TERRAIN FILE

sample.terrain

PATH FILE

sample.path

PILOT FILE

sample.pilot

AVIONICS FILE

sample.avionics

AIRCRAFT FILE

sample.aircraft

SURVEQUIP FILE

sample.radar
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DATAREPORTER FILE

sample.data

END FILES

Appendix A." A Simple Example

This configuration file shows a consistent naming convention. In creating a sce-

nario, naming all the files in the scenario similarly is a good idea, to avoid con-

fusing them with files for other scenarios.

TERRAIN FILE (SAMPLE.TERRAIN)

POINTLIST

24

1 6000

2 9000

3 9000

4 6000

5 6000

6 9000

7 9000

8 6000

0 i000.0 0.0

0 i000.0 0.0

0 13000.0 0.0

0 13000.0 0.0

0 i000.0 i000.0

0 i000.0 i000.0

0 13000.0 i000.0

0 13000.0 i000.0

9 15000.0

i0 18000.

ii 18000

12 15000

13 15000

14 18000

15 18000

16 15000

i000.0 0.0

0 i000.0 0.0

0 18000.0 0.0

0 18000.0 0.0

0 i000.0 i000.0

0 i000.0 i000.0

0 18000.0 i000.0

0 18000.0 i000.0

17 15000.0 7500.0 i000.0

18 18000.0 7500.0 i000.0
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19 18000 0 16500.0 i000.0

20 15000 0 16500.0 i000.0

21 15000 0 7500.0 2000.0

22 18000 0 7500.0 2000.0

23 18000 0 16500.0 2000.0

24 15000 0 16500.0 2000.0

TERRAINLIST

3

Obstructionl-i

Lower

1 2 3 4

Upper

5 6 7 8

Obstruction2-1

Lower

9 i0 ii 12

Upper

13 14 15 16

Obstruction2-2

Lower

17 18 19 20

Upper

21 22 23 24

This file demonstrates the use of two terrain objects stacked atop each other to

create a more detailed topography. Obstructions 2-1 and 2-2 combine to create the

terrain on the right side in Figure A-1.
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PATH FILE (SAMPLE.PATH)

APPROACHLIST

2

SampleApproach

4

Cornerpost

CPl

12000.0 0.0

Waypoint

WPI

12000.0 5000.0

Waypoint

WP2

12000.0 i0000.0

Handoffpoint

HO

8000.0 20000.0

2500.0

2000.0

1500.0

500.0

SampleBreakoutApproach

1

BreakoutPoint

B0

0.0 20000.0 2500.0

LANDINGLIST

0

PATHLIST

2

SamplePath

Approach

SampleApproach
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NoLanding

SampleBreakoutPath

Approach

SampleBreakoutApproach

NoLanding

PILOT FILE (SAMPLE.PILOT)

PILOTLIST

1

StdPilot

1

.95 .75 .25

This pilot will react fairly quickly regardless of the level of readiness. Even when

the pilot is very busy, the probability of pilot reaction to a stimulus is .25. To cre-

ate a 50 percent chance that the pilot will fail to react to a stimulus completely,

the probability would have to be approximately .012.

AVIONICS FILE (SAMPLE.AVIONICS)

AVIONICSLIST

2

PerfectAvionics

1

Primary

0.0 0.0

0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.00.00.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.00.00.0

1 1

MapEr r o rAvi oni c s
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Primary

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-3100.00.00.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-3100.00.00.0

1 1

0.00.0

0.00.0

Appendix A." A Simple Example

In this scenario, we decided to use two avionics packages. The other option would

be to create one package: The normal operating mode would get the perfect error

values, and the failed mode would get the map error.

The map error specified will cause the aircraft with this set of avionics to measure

its position 3,100 feet to the left of where it actually is. Thus, when the aircraft

thinks it is centered on the path, it will be flying directly toward the obstruction on

the right side of Figure A- 1.

AIRCRAFT FILE (SAMPLE.AIRCRAFT)

MOVINGOBJECTL IST

1

StdPlane

nml

0.0 0.0 0.0

0.0 1.0 0.0

i00

AIRCRAFTLI ST

StdPlane

StandardAC

Pilot

StdPilot

Avionics
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PerfectAvionics

Path

SamplePath

BreakoutPath

SampleBreakoutPath

SurvEquip

PerfectRadar

MinimumDistances

750 750

ActionSequence

0.0 Approach

Events

0

StdPlane

MapErrorAC

Pilot

StdPilot

Avionics

MapErrorAvionics

Path

SamplePath

BreakoutPath

SampleBreakoutPath

SurvEquip

FailedRadar

MinimumDistances

750 750

ActionSequence

400.0 Approach

Events

0

A-8



Appendix A: A Simple Example

Both aircraft use the same pilot and fly the same path. The second aircraft uses

flawed navigation and surveillance equipment. The second aircraft starts

400 simulation cycles (400 seconds) after the first, which ensures that the output

data are uncluttered. To run a parametric study, the user can define several aircraft

that are similar in all respects except one and see how that variation affects the
outcome.

SURVEILLANCE EQUIPMENT FILE (SAMPLE.RADAR)

SURVEQUIPLIST

2

PerfectRadar

Operating

0.0

0.0 0.0 0.0 0.0 0.0 0.0

50000.0

Backup

85.0

0.0 0.15 0.0 0.15 0.0 i00.0

850.0

1

Fai ledRadar

Operating

0.0

0.0 0.0 0.0 0.0 0.0 0.0

50000.0

Backup

85.0

0.0 0.15 0.0 0.15 0.0 i00.0

850.0

2

These radars are identical except for their status: "Perfect Radar" has a status of

1 (operating) and "Failed Radar" has a status of 2 (failed). It would be just as easy

to assign both aircraft the same surveillance equipment and create an event in the

second aircraft that causes its radar to fail before it begins its approach.
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DATA REPORTER FILE (SAMPLE.DATA)

MINIMUM TERRAIN DISTANCE

500.0

FULL PRINTOUT (Y/N)

Y

OUTPUT FILE EXCERPTS (SAMPLE.DATA.OUT)

The simulation output is primitive, but consistent. Every line of data includes the

relevant aircraft's name, the simulation time, and data, which can be locations in

three dimensions or messages concerning simulation events.

The simulation starts with the first aircraft, "StandardAC," making a turn toward

the first waypoint. Because StandardAC's track already aligns with the waypoint,

the turn is complete in one simulation cycle. The data specify the aircraft, then the

simulation time (1), followed by its indicated x, y, and = coordinates and its true x,

y, and :. coordinates.

StandardAC i, IND: 12000, 0,

2500

StandardAC 1 completed turn.

2500, TRUE: 12000, 0,

After the aircraft completes its turn, it flies to the first waypoint:

StandardAC 2, IND: 12

12000, 99.5037, 2490.

StandardAC 3, IND: 12

12000 199.007, 2480.

StandardAC 4, IND: 12

12000 298.511, 2470.

StandardAC i00,

12000 9751.36,

StandardAC I01,

12000 9850.87,

StandardAC 102,

12000 9950.37,

StandardAC 102

000, 99.5037, 2490.05, TRUE:

O5

000, 199.007, 2480.1,

1

TRUE:

000, 298.511, 2470.15, TRUE:

15

IND: 12000, 9751.36, 1524.86,

1524.86

IND: 12000, 9850.87, 1514.91,

1514.91

TRUE:

TRUE:

IND: 12000, 9950.37, 1504.96, TRUE:

1504.96

has arrived at goal wp.
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Notice that even though the avionics system has perfect accuracy, the aircraft

does not directly coincide with the first waypoint. The aircraft travels in discrete

steps, and the waypoint falls between two of those steps.

The aircraft continues to fly the route without incident, concluding at simulation

time 212.

StandardAC 212, IND: 7990.21, 20024, 497.593,

7990.21, 20024, 497.593

StandardAC 212 has arrived at goal wp.

TRUE:

At simulation time 401, the second aircraft, "MapErrorAC," begins its flight. No-

tice that its true location is 3,100 feet from its indicated location. This error puts

the left edge of Obstruction 2-2 in its path.

HapErrorAC 401, IND: 12000, 0, 2500, TRUE: 15100, 0,

2500

MapErrorAC 401 completed turn.

MapErrorAC 402, IND: 12000, 99.5037, 2490.05, TRUE:

15100, 99.5037, 2490.05

MapErrorAC 403, IND: 12000, 199.007, 2480.1, TRUE:

15100, 199.007, 2480.1

As time passes, the aircraft approaches the obstruction. The aircraft has a mini-

mum operational separation distance of 750 feet, according to its input file speci-

fication (see aircraft file). The simulation notes that the aircraft has violated its

minimum operational distande at simulation time 469. Three more cycles are re-

quired for the pilot to react and attempt an emergency turn/climb. By then, the
aircraft is less than 500 feet from the obstruction. The data reporter lists 500 feet

as the minimum safe distance for an aircraft, so the simulation notes that a crash is

imminent. The emergency maneuver is successful, however, and the aircraft in-

creases its distance beyond 500 feet once again at simulation time 482. Two sec-

onds later, the aircraft completes the turn/climb; one time step after that, it

increases its distance beyond 750 feet.

MapErrorAC 467, IND: 12000, 6567.25, 1843.28, TRUE:

15100, 6567.25, 1843.28

MapErrorAC 468, IND: 12000, 6666.75, 1833.33, TRUE:

15100, 6666.75, 1833.33
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MapErrorAC 469, IND: 12000, 6766.25, 1823.37, TRUE:

15100, 6766.25, 1823.37

MapErrorAC, 469 below min. terr. dist.

MapErrorAC 470, IND: 12000, 6865.76, 1813.42, TRUE:

15100, 6865.76, 1813.42

MapErrorAC 471, IND: 12000, 6965.26, 1803.47, TRUE:

15100, 6965.26, 1803.47

MapErrorAC 472, IND: 12000, 7064.76, 1793.52, TRUE:

15100, 7064.76, 1793.52

MapErrorAC, 472 crash imminent.

MapErrorAC 473 Attempting emergency turn/climb

MapErrorAC 474, IND: 11991, 7163.73, 1853.52, TRUE:

15091, 7163.73, 1853.52

MapErrorAC 475 IND: 11971, 7241.1, 1913.52, TRUE:

15071, 7241.1, 1913.52

MapErrorAC 476 IND: 11939.9, 7314.75, 1973.52, TRUE:

15039.9, 7314.75, 1973.52

MapErrorAC 477 IND: 11898.5, 7383.12, 2033.52, TRUE:

14998.5, 7383.12, 2033.52

MapErrorAC 478 IND: 11847.6, 7444.77, 2093.52, TRUE:

14947.6, 7444.77, 2093.52

MapErrorAC 479 IND: 11788.4, 7498.4, 2153.52, TRUE:

14888.4, 7498.4, 2153.52

MapErrorAC 480 IND: 11722, 7542.88, 2213.52, TRUE:

14822, 7542.88, 2213.52

MapErrorAC 481, IND: 11649.8, 7577.26, 2273.52, TRUE:

14749.8, 7577.26, 2273.52

MapErrorAC 482, IND: 11573.4, 7600.82, 2333.52, TRUE:

14673.4, 7600.82, 2333.52

MapErrorAC, 482 crash no longer imminent.

MapErrorAC 483, IND: 11494.4, 7613.06, 2393.52, TRUE:

14594.4, 7613.06, 2393.52

MapErrorAC 484, IND: 11414.5, 7613.73, 2453.52, TRUE:

14514.5, 7613.73, 2453.52

MapErrorAC 484, completed turnclimb.

MapErrorAC, 485 clear of terrain.

MapErrorAC 485, IND: 11334.6, 7612.76, 2513.52, TRUE:

14434.6, 7612.76, 2513.52
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MapErrorAC 486, IND: 11235.2, 7623.27, 2513.44, TRUE:

14335.2, 7623.27, 2513.44

MapErrorAC 487, IND: 11138, 7646.62, 2513.36, TRUE:

14238, 7646.62, 2513.36

MapErrorAC 488, IND: 11044.7, 7682.41, 2513.28, TRUE:

14144.7, 7682.41, 2513.28

When the aircraft completes its turn/climb, it begins to fly its breakout path. The

model assumes that once an aircraft breaks out, it will keep well clear of any fur-

ther encounters with terrain. Therefore, the model does not monitor the aircraft as

it flies the breakout path, and it is not necessary to include this portion of the

flight. The addition of traffic to this scenario will change that assumption, how-

ever. In anticipation of that eventuality, the model continues to fly the aircraft un-

til it reaches the breakout point.
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